Effects of Water Stress, Defoliation and Crop Thinning on Vitis vinifera L. cv. Solaris: Part I: Plant Responses, Fruit Development and Fruit Quality

Author:

Aru ViolettaORCID,Nittnaus Andreas Paul,Sørensen Klavs Martin,Engelsen Søren BallingORCID,Toldam-Andersen Torben BoORCID

Abstract

Viticultural practices and irrigation have a major impact on fruit development and yield, and ultimately on must quality. The effects of water deficit (WD), defoliation (Def), and crop-thinning (CT) on Solaris plants and fruit development, as well as on the chemical composition of grape juice were investigated. WD was induced at three periods during fruit development (pre-veraison, veraison, and ripening) in pot-grown plants, while Def and CT were carried out on field-grown plants. Environmental and vegetative parameters were monitored during the experiments. The bulk chemical composition of the fruits was determined in juice by Fourier Transform-Infrared (FT-IR) spectroscopy throughout fruit ripening and at final harvest. The results showed that WD reduced soil water content and leaf water status. CT significantly reduced yield per vine, but increased cluster size. Mid to late WD reduced soluble solids by 1%. CT increased sugar content in juice, while Def decreased sugar accumulation. Total acids were higher in the juice from the field vines. Yet, CT lowered malic and tartaric acids. Def increased tartaric acid. Ammonia and alpha amino nitrogen were higher in the juice from pot-grown vines, while pH was lowered by Def and raised by CT. It is concluded that Solaris has a remarkable ability to tolerate and recover from WD. CT and Def significantly affected the bulk chemical composition of grapes in terms of total acidity and sugar accumulation, with CT grapes having the highest sugar content and the lowest total acidity and Def the opposite.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Reference42 articles.

1. Strategies for mitigation of climate change: a review

2. Global Change and Baltic Coastal Zones;Schernewski,2011

3. The wine industry in Denmark;Becker;Development,2012

4. Landbrugsstyrelsen: Notat-Opgørelse af Afgrødefordeling 2021. Ministry of Food, Agriculture and Fisheries. J.nr. 21-22120-000143https://lbst.dk/fileadmin/user_upload/NaturErhverv/Filer/Tilskud/Arealtilskud/Direkte_stoette_-_grundbetaling_mm/2021/Opgoerelse_af_afgroedefordelingen_2021.pdf

5. Viticulture and Environment;Gladstone,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3