Effects of Dietary Cottonseed Protein Concentrate Levels on Growth Performance, Health Status, Flesh Quality and Intestinal Microbiota of Grass Carp (Ctenopharyngodon idellus)

Author:

Liu Guoqing,Zhou Meng,Wang Xiaoyu,Mao Xiangjie,Long Xianmei,Xie Shouqi,Han Dong,Tan QingsongORCID

Abstract

The aim of this study was to evaluate the nutritional value of cottonseed protein concentrate (CPC) as a single dietary protein source and the optimal protein level for grass carp (Ctenopharyngodon idellus). An 8-week feeding trial was conducted by feeding juvenile grass carp (initial body weight: 4.68 ± 0.01 g) with six experimental diets containing graded levels of protein provided by CPC. The results showed that the optimal CPC level (CPC4) improved the growth performance and health status of grass carp. The optimal dietary protein level was estimated to be 38.61 and 38.66% based on specific growth rate (SGR) and feed efficiency (FE), respectively. The CPC4 group significantly increased the total antioxidant capacity (T-AOC) content and glutathione peroxidase (GSH-Px) activity in the hepatopancreas (p < 0.05). In addition, the CPC4 group increased the muscle T-AOC and glutathione (GSH) content and improved muscle hardness, and the gene expression of MRFs, fgf6a, myhc-7, myhc-1, myhc-4, igf-II, and tor was upregulated while mstn gene expression was downregulated (p < 0.05). Correlation analysis revealed that the optimal dietary CPC level promoted grass carp growth, health, and flesh quality by regulating the relative abundance of intestinal microbes. Furthermore, CPC6 upregulated the ko00480 (Glutathione metabolism) and ko00620 (Pyruvate metabolism) pathways compared to CPC1 (p < 0.05), possibly indicating that low dietary CPC levels adversely affected amino acid metabolism in the intestinal microbiota of grass carp, while a high level of CPC will meet the metabolic needs of the body by increasing the utilization of energy.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3