Author:
Chen Mingfan,Bai Fakai,Song Tao,Niu Xingjian,Wang Xuexi,Wang Kun,Ye Jidan
Abstract
A transcriptome analysis was conducted to provide the first detailed overview of dietary taurine intervention on liver lipid accumulation caused by high–fat in groupers. After an eight-week feeding, the fish fed 15% fat diet (High–fat diet) had higher liver lipid contents vs. fish fed 10% fat diet (Control diet). 15% fat diet with 1% taurine (Taurine diet) improved weight gain and feed utilization, and decreased hepatosomatic index and liver lipid contents vs. the High–fat diet. In the comparison of the Control vs. High–fat groups, a total of 160 differentially expressed genes (DEGs) were identified, of which up- and down-regulated genes were 72 and 88, respectively. There were 49 identified DEGs with 26 and 23 of up- and down-regulated in the comparison to High–fat vs. Taurine. Several key genes, such as cysteine dioxygenase (CDO1), ADP–ribosylation factor 1/2 (ARF1_2), sodium/potassium–transporting ATPase subunit alpha (ATP1A), carnitine/acylcarnitine translocase (CACT), and calcium/calmodulin–dependent protein kinase II (CAMK) were obtained by enrichment for the above DEGs. These genes were enriched in taurine and hypotaurine metabolism, bile secretion, insulin secretion, phospholipase D signaling pathway, and thermogenesis pathways, respectively. The present study will also provide a new insight into the nutritional physiological function of taurine in farmed fish.
Funder
National Natural Science Foundation of China
Science and Technology Project of Fujian Province
Subject
Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism