Effects of Apple Polyphenols and Taurine on Growth Performance, Tissue Morphology, and Lipid and Glucose Metabolism in Rice Field Eel (Monopterus albus) Fed High Oxidized Fish Oil

Author:

Wu Shanshan1,Li Jiamin1,Deng Yao1,Fang Peng1,Lei Wei1,Luo Ao1,He Zhengwei1,Xiong Liufeng1,Yang Gang2,Kumar Vikas3,Peng Mo14ORCID

Affiliation:

1. College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China

2. Department of Fisheries Science, School of Life Science, Nanchang University, Nanchang 330031, China

3. Aquaculture Research Institute, Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA

4. Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang 330045, China

Abstract

The aim of this trial was to investigate the effects of apple polyphenols (AP) and taurine (TA) on the growth performance, tissue morphology, and lipid and glucose metabolism in rice field eel fed diets with high oxidized fish oil (OFO). A 10-week feeding experiment was conducted using juveniles (initial body weight 16.66 ± 0.02 g) fed five different diets. Three diets were formulated with various levels of OFO at 9.5, 600, and 800 meq·kg−1 and named as Control, POV600, and POV800 diet, respectively. The other two diets were POV600 and POV800 supplemented with 0.5% AP and 0.2% TA, respectively. Compared to the Control group, only the eels fed POV800 exhibited an increase in weight gain and specific growth rate along with a reduction in feed conversion ratio. AP and TA did not affect growth performance; juveniles fed AP, however, showed a decrease in liver weight. Both POV600 and POV800 decreased nuclei number and increased vacuoles size in the liver. POV800 damaged the intestinal structure integrity and reduced goblet cells number. AP repaired the liver damage on nuclei number and vacuoles size in fish fed with POV600 diet, while TA mitigated intestinal histopathological damage on intact structure and goblet cells number. The mRNA expression level of liver ampkα in fish fed AP was upregulated, while dietary TA upregulated the mRNA expression levels of liver ampkα and accα. In the muscle, POV600 downregulated mRNA expression levels of accα, cpt1, and lipin, whereas POV800 upregulated mRNA expression levels of accα, pparα, and lipin. Dietary AP and TA could counteract the effects of POV600 and POV800 diet on muscle lipid metabolism. Both POV600 and POV800 diets upregulated mRNA expression levels of liver pck1 and gsk3α. AP and TA both downregulated mRNA expression level of liver pck1, while only TA downregulated the expression of liver gsk3α. AP increased the mRNA expression level of gsk3α in muscle. In summary, inclusion of AP and TA did not affect growth performance but showed a potential to alleviate liver or intestinal damages induced by a high OFO diet. Dietary AP and TA were also found to regulate mRNA expression of genes related to lipid and glucose metabolism.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3