Abstract
Drought intensity modifies the assimilatory pathway of glutathione (GSH) synthesis. Abscisic acid (ABA) is a representative signaling hormone involved in regulating plant stress responses. This study aimed to investigate an interactive regulation of sulfate and/or ABA in GSH metabolism and redox. The drought-responsive alterations in sulfate assimilation and GSH-based redox reactions were assessed relative to ABA responses on the time-course of drought intensity. Drought-responsive H2O2 concentrations were divided into two distinct phases—an initial 4 days of no change (Ψw ≥ −0.49 MPa) and a phase of higher accumulation during the late phase of the drought (days 10–14; Ψw ≤ −1.34 MPa). During the early phase of the drought, GSH/GSSG redox state turned to the slightly reduced state with a transient increase in GSH, resulting from a strong activation of H2O2 scavenging enzymes, ascorbate peroxidase (APOX) and glutathione reductase (GR). The late phase of the drought was characterized by a decrease in GSH due to cysteine accumulation, shifting GSH- and NADPH-based redox states to higher oxidization, increasing sulfate and ABA in xylem, and causing ABA accumulation in leaves. Regression analysis revealed that sulfate in xylem sap was positively correlated with H2O2 concentrations and ABA was closely related to decreases in the GSH pool and the oxidation of GSH catalyzed by glutathione peroxidase (GPOX). These results indicate that drought-induced oxidation proceeds through the suppression of GSH synthesis and further GSH oxidation in a sulfate-activated ABA-dependent manner.
Funder
National Research Foundation of South Korea
Subject
Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献