Hopomics: Humulus lupulus Brewing Cultivars Classification Based on LC-MS Profiling and Nested Feature Selection

Author:

Ikhalaynen Yuriy AndreevichORCID,Plyushchenko Ivan VictorovichORCID,Rodin Igor Alexandrovich

Abstract

Omics approaches in plant analysis find many different applications, from classification to new bioactive compounds discovery. Metabolomics seems to be one of the most informative ways of describing plants’ phenotypes, since commonly used methods such as liquid chromatography–mass spectrometry (LC-MS) and nuclear magnetic resonance spectroscopy (NMR) could provide a huge amount of information about samples. However, due to high efficiency, many disadvantages arise with the complexity of the experimental design. In the present work, we demonstrate an untargeted metabolomics pipeline with the example of a Humulus lupulus classification task. LC-MS profiling of brewing cultivars samples was carried out as a starting point. Hierarchical cluster analysis (HCA)-based classification in combination with nested feature selection was provided for sample discrimination and marker compounds discovery. Obtained metabolome-based classification showed an expected difference compared to genetic-based classification data. Nine compounds were found to have the biggest classification power during nested feature selection. Using database search and molecular network construction, five of them were identified as known hops bitter compounds.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3