REDA: A New Methodology to Validate Sensor Systems for Person Detection under Variable Environmental Conditions

Author:

Meltebrink ChristianORCID,Komesker MagnusORCID,Kelsch Carolina,König Daniel,Jenz Mario,Strotdresch MarvinORCID,Wegmann Benjamin,Weltzien CorneliaORCID,Ruckelshausen Arno

Abstract

Perception of the environment by sensor systems in variable environmental conditions is very complex due to the interference influences. In the field of autonomous machines or autonomous vehicles, environmental conditions play a decisive role in safe person detection. A uniform test and validation method can support the manufacturers of sensor systems during development and simultaneously provide proof of functionality. The authors have developed a concept of a novel test method, “REDA”, for this purpose. In this article, the concept is applied and measurement data are presented. The results show the versatile potential of this test method, through the manifold interpretation options of the measurement data. Using this method, the strengths and weaknesses of sensor systems have been identified with an unprecedented level of detail, flexibility, and variance to test and compare the detection capability of sensor systems. The comparison was possible regardless of the measuring principle of the sensor system used. Sensor systems have been tested and compared with each other with regard to the influence of environmental conditions themselves. The first results presented highlight the potential of the new test method. For future applications, the test method offers possibilities to test and compare manifold sensing principles, sensor system parameters, or evaluation algorithms, including, e.g., artificial intelligence.

Funder

Federal Ministry of Education and Research

B. Strautmann & Söhne GmbH u. Co. KG, 49196 Bad Laer, Germany

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3