Using Robot-Based Variables during Upper Limb Robot-Assisted Training in Subacute Stroke Patients to Quantify Treatment Dose

Author:

Jamin Pascal,Duret Christophe,Hutin EmilieORCID,Bayle NicolasORCID,Koeppel TyphaineORCID,Gracies Jean-Michel,Pila OphélieORCID

Abstract

In post-stroke motor rehabilitation, treatment dose description is estimated approximately. The aim of this retrospective study was to quantify the treatment dose using robot-measured variables during robot-assisted training in patients with subacute stroke. Thirty-six patients performed fifteen 60 min sessions (Session 1–Session 15) of planar, target-directed movements in addition to occupational therapy over 4 (SD 2) weeks. Fugl–Meyer Assessment (FMA) was carried out pre- and post-treatment. The actual time practiced (percentage of a 60 min session), the number of repeated movements, and the total distance traveled were analyzed across sessions for each training modality: assist as needed, unassisted, and against resistance. The FMA score improved post-treatment by 11 (10) points (Session 1 vs. Session 15, p < 0.001). In Session 6, all modalities pooled, the number of repeated movements increased by 129 (252) (vs. Session 1, p = 0.043), the total distance traveled increased by 1743 (3345) cm (vs. Session 1, p = 0.045), and the actual time practiced remained unchanged. In Session 15, the actual time practiced showed changes only in the assist-as-needed modality: −13 (23) % (vs. Session 1, p = 0.013). This description of changes in quantitative-practice-related variables when using different robotic training modalities provides comprehensive information related to the treatment dose in rehabilitation. The treatment dose intensity may be enhanced by increasing both the number of movements and the motor difficulty of performing each movement.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3