Evaluation of a novel real-time adaptive assist-as-needed controller for robot-assisted upper extremity rehabilitation following stroke

Author:

Arantes Ana P.ORCID,Bressan NadjaORCID,Borges Ludymila R.ORCID,McGibbon Chris A.ORCID

Abstract

Rehabilitation therapy plays an essential role in assisting people with stroke regain arm function. Upper extremity robot therapy offers a number of advantages over manual therapies, but can suffer from slacking behavior, where the user lets the robot guide their movements even when they are capable of doing so by themselves, representing a major barrier to reaching the full potential of robot-assist rehabilitation. This is a pilot clinical study that investigates the use of an electromyography-based adaptive assist-as-needed controller to avoid slacking behavior during robotic rehabilitation for people with stroke. The study involved a convenience sample of five individuals with chronic stroke who underwent a robot therapy program utilizing horizontal arm tasks. The Fugl-Meyer assessment (FM) was used to document motor impairment status at baseline. Velocity, time, and position were quantified as performance parameters during the training. Arm and shoulder surface electromyography (EMG) and electroencephalography (EEG) were used to assess the controller’s performance. The cross-sectional results showed strong second-order relationships between FM score and outcome measures, where performance metrics (path length and accuracy) were sensitive to change in participants with lower functional status. In comparison, speed, EMG and EEG metrics were more sensitive to change in participants with higher functional status. EEG signal amplitude increased when the robot suggested that the robot was inducing a challenge during the training tasks. This study highlights the importance of multi-sensor integration to monitor and improve upper-extremity robotic therapy.

Funder

New Brunswick Innovation Foundation

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference29 articles.

1. Design of a spring-assisted exoskeleton module for wrist and hand rehabilitation;JC Perry;Annu Int Conf IEEE Eng Med Biol Soc,2016

2. Strengthening interventions increase strength and improve activity after stroke: a systematic review;L Ada;Aust J Physiother,2006

3. Robotics, motor learning, and neurologic recovery.;DJ Reinkensmeyer;Annu Rev Biomed Eng,2004

4. Exoskeleton Technology in Rehabilitation: Towards an EMG-Based Orthosis System for Upper Limb Neuromotor Rehabilitation;LMV Benitez;Journal of Robotics,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3