An SHA-3 Hardware Architecture against Failures Based on Hamming Codes and Triple Modular Redundancy

Author:

Torres-Alvarado AlanORCID,Morales-Rosales Luis AlbertoORCID,Algredo-Badillo IgnacioORCID,López-Huerta FranciscoORCID,Lobato-Báez MarianaORCID,López-Pimentel Juan CarlosORCID

Abstract

Cryptography has become one of the vital disciplines for information technology such as IoT (Internet Of Things), IIoT (Industrial Internet Of Things), I4.0 (Industry 4.0), and automotive applications. Some fundamental characteristics required for these applications are confidentiality, authentication, integrity, and nonrepudiation, which can be achieved using hash functions. A cryptographic hash function that provides a higher level of security is SHA-3. However, in real and modern applications, hardware implementations based on FPGA for hash functions are prone to errors due to noise and radiation since a change in the state of a bit can trigger a completely different hash output than the expected one, due to the avalanche effect or diffusion, meaning that modifying a single bit changes most of the desired bits of the hash; thus, it is vital to detect and correct any error during the algorithm execution. Current hardware solutions mainly seek to detect errors but not correct them (e.g., using parity checking or scrambling). To the best of our knowledge, there are no solutions that detect and correct errors for SHA-3 hardware implementations. This article presents the design and a comparative analysis of four FPGA architectures: two without fault tolerance and two with fault tolerance, which employ Hamming Codes to detect and correct faults for SHA-3 using an Encoder and a Decoder at the step-mapping functions level. Results show that the two hardware architectures with fault tolerance can detect up to a maximum of 120 and 240 errors, respectively, for every run of KECCAK-p, which is considered the worst case. Additionally, the paper provides a comparative analysis of these architectures with other works in the literature in terms of experimental results such as frequency, resources, throughput, and efficiency.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-Speed Hardware Architecture Based on Error Detection for KECCAK;Micromachines;2023-05-27

2. A Survey On Secure Architectures Using Hash Function Based On FPGA for Block Chain Enabled IoT Devices;2023 11th International Conference on Emerging Trends in Engineering & Technology - Signal and Information Processing (ICETET - SIP);2023-04-28

3. Developing a New Collision-Resistant Hashing Algorithm;Mathematics;2022-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3