Mutual Coupling Reduction in MIMO DRA through Metamaterials

Author:

Khan Muhammad Sabir1,Khan Shahid1ORCID,Khan Owais1,Aqeel Sajid1,Gohar Neelam2ORCID,Dalarsson Mariana3ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, COMSATS University Islamabad, Abbottabad-Campus, Abbottabad 22060, Pakistan

2. Department of Computer Science, Shaheed Benazir Bhutto Women University, Peshawar 25000, Pakistan

3. School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, SE 100-44 Stockholm, Sweden

Abstract

A single negative metamaterial structure with hexagonal split-ring resonators (H-SRRs) is inserted within a two-port multiple-input multiple-output (MIMO) dielectric resonator antenna (DRA) in order to achieve a reduction of mutual coupling between closed multiple antenna elements. Between closed, tightly coupled, high-profile antenna elements, the single negative magnetic inclusions (H-SRRs) are embedded. By incorporating magnetic structures within antenna elements, the mutual coupling is significantly diminished. Mutual coupling reduction is attained by inserting an array of hexagonal split-ring resonators between the inter-spacing elements. An operative approach for the reduction of the mutual coupling between two × two MIMO DRAs initially operating at 5.2-GHz band is provided. To make the simulated design replica of the fabricated prototype, an air gap is introduced between the substrate, DRs, and H-SSRs. The addition of the air gap shifts the simulated results to 5.9 GHz, which closely resembles the measured values. The mutual coupling reduction is realized by integrating a meta-surface amid the two × two MIMO DRAs, which are settled in the H-plane. The meta-surface embraces an array of hexagonal split-ring resonator (H-SRR) cells that are unified along the E-plane. The H-SRR structure is designed to offer band-stop functionality within the antenna bandwidth. The proposed design has an overall dimension of 40 × 58.3 × 4.75 mm3 (1.5λ × 1.02λ × 0.079λ). By stacking the DRA with a one × three array of H-SRR unit cells, a 30 dB reduction in the mutual coupling level is attained without compromising on the antenna performance. The corresponding mutual impedance of the MIMO DRA is better than 30 dB over 5.9–6.1 GHz operating bandwidth. The proposed design has a DG of 10 db, ECC < 0.02, CCL < 0.02 bits/s/Hz, and an MEG of 0 dB. The overall design has a promising performance, which shows its suitability for the target wireless application.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference32 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3