A Simple Algorithm for Deriving an NDVI-Based Index Compatible between GEO and LEO Sensors: Capabilities and Limitations in Japan

Author:

Obata KentaORCID,Yoshioka HirokiORCID

Abstract

Geostationary (GEO) satellite sensors provide earth observation data with a high temporal frequency and can complement low earth orbit (LEO) sensors in monitoring terrestrial vegetation. Consistency between GEO and LEO observation data is thus critical to the synergistic use of the sensors; however, mismatch between the sun–target–sensor viewing geometries in the middle-to-high latitude region and the sensor-specific spectral response functions (SRFs) introduce systematic errors into GEO–LEO products such as the Normalized Difference Vegetation Index (NDVI). If one can find a parameter in which the value is less influenced by geometric conditions and SRFs, it would be invaluable for the synergistic use of the multiple sensors. This study attempts to develop an algorithm to obtain such parameters (NDVI-based indices), which are equivalent to fraction of vegetation cover (FVC) computed from NDVI and endmember spectra. The algorithm was based on a linear mixture model (LMM) with automated computation of the parameters, i.e., endmember spectra. The algorithm was evaluated through inter-comparison between NDVI-based indices using off-nadir GEO observation data from the Himawari 8 Advanced Himawari Imager (AHI) and near-nadir LEO observation data from the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) as a reference over land surfaces in Japan at middle latitudes. Results showed that scene-dependent biases between the NDVI-based indices of sensors were −0.0004±0.018 (mean ± standard deviation). Small biases were observed in areas in which the fractional abundances of vegetation were likely less sensitive to the view zenith angle. Agreement between the NDVI-based indices of the sensors was, in general, better than the agreement between the NDVI values. Importantly, the developed algorithm does not require regression analysis for reducing biases between the indices. The algorithm should assist in the development of algorithms for performing inter-sensor translations of vegetation indices using the NDVI-based index as a parameter.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3