Orthorectification of Data from the AHI Aboard the Himawari-8 Geostationary Satellite

Author:

Matsuoka Masayuki1ORCID,Yoshioka Hiroki2ORCID

Affiliation:

1. Graduate School of Engineering, Mie University, 1577 Kurimamachiya, Tsu 514-8507, Mie, Japan

2. Department of Information Science and Technology, Aichi Prefectural University, 1522-3 Ibara-Gabasama, Nagakute 480-1198, Aichi, Japan

Abstract

The use of geostationary meteorological satellites for land remote sensing has attracted much attention after the launch of the Himawari-8 satellite equipped with a sensor with enhanced land observation capabilities. In the context of land remote sensing, geolocation errors are often a critical issue, especially in mountainous regions, where a precise orthorectification process is required to maintain high geometric accuracy. The present work addresses the issues related to orthorectification of the new-generation geostationary Earth orbit (GEO) satellites by applying an algorithm known as the ray-tracing indirect method to the data acquired by the Advanced Himawari Imager (AHI) aboard the Himawari-8 satellite. The orthorectified images of the AHI were compared with data from the Sentinel-2 Multispectral Instrument (MSI). The comparison shows a clear improvement of the geometric accuracy, especially in high-elevation regions located far from the subsatellite point. The results indicate that approximately 7.3% of the land pixels are shifted more than 3 pixels during the orthorectification process. Furthermore, the maximum displacement after the orthorectification is up to 7.2 pixels relative to the location in the original image, which is of the Tibetan Plateau. Moreover, serious problems caused by occlusions in the images of GEO sensors are clearly indicated. It is concluded that special caution is needed when using data from GEO satellites for land remote sensing in cases where the target is in a mountainous region and the pixels are located far from the subsatellite point.

Funder

the JSPS KAKENHI

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3