Author:
Qiao Zhiliang,Boom Boris,Annema Anne-Johan,Wiegerink Remco,Nauta Bram
Abstract
Interface circuits for capacitive MEMS accelerometers are conventionally based on charge-based approaches. A promising alternative to these is provided by frequency-based readout techniques that have some unique advantages as well as a few challenges associated with them. This paper addresses these techniques and presents a derivation of the fundamental resolution limits that are imposed on them by phase noise. Starting with an overview of basic operating principles, associated properties and challenges, the discussions then focus on the fundamental trade-offs between noise, power dissipation and signal bandwidth (BW) for the LC-oscillator-based frequency readout and for the conventional charge-based switched-capacitor (SC) readout. Closed-form analytical formulas are derived to facilitate a fair comparison between the two approaches. Benchmarking results indicate that, with the same bandwidth requirement, charge-based readout circuits are more suitable when optimizing for noise performance, while there is still some room for frequency-based techniques when optimizing for power consumption, especially when flicker phase noise can be mitigated.
Funder
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Reference63 articles.
1. Micromachined inertial sensors
2. Analog Circuits and Systems for Voltage-Mode and Current-Mode Sensor Interfacing Applications;De Marcellis,2011
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献