Abstract
Particulate organic carbon (POC) derived from inland water plays an important role in the global carbon (C) cycle; however, the POC dynamic in tropical rivers is poorly known. We assessed the POC concentration, flux, and sources in the Usumacinta, the largest tropical river in North America, to determine the controls on POC export to the Gulf of Mexico. We examined the Mexican middle and lower Usumacinta Basin during the 2017 dry (DS) and rainy (RS) seasons. The POC concentration ranged from 0.48 to 4.7 mg L−1 and was higher in the RS, though only in the middle basin, while remaining similar in both seasons in the lower basin. The POC was predominantly allochthonous (54.7 to 99.6%). However, autochthonous POC (phytoplankton) increased in the DS (from 5.1 to 17.7%) in both basins. The POC mass inflow–outflow balance suggested that floodplains supply (C source) autochthonous POC during the DS while retaining (C sink) allochthonous POC in the RS. Ranging between 109.1 (DS) and 926.1 t POC d−1 (RS), the Usumacinta River POC export to the Gulf of Mexico was similar to that of other tropical rivers with a comparable water discharge. The extensive floodplains and the “Pantanos de Centla” wetlands in the lowlands largely influenced the POC dynamics and export to the southern Gulf of Mexico.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献