Flocculation Patterns Related to Intra-Annual Hydrodynamics Variability in the Lower Grijalva-Usumacinta System

Author:

Izquierdo-Ayala KleverORCID,García-Aragón Juan Antonio,Castillo-Uzcanga Maria Mercedes,Díaz-Delgado CarlosORCID,Carrillo LauraORCID,Salinas-Tapia HumbertoORCID

Abstract

Particle aggregation modifies sediment dynamics, which is a determining factor for morphodynamic and ecological processes in deltaic plains. Here, we investigated the link between intra-annual hydrodynamics variability and flocculation in the Grijalva-Usumacinta system. Monthly (2016–2017) and seasonal (2021–2022) river data was processed using analytical methods and the simplified sonar equation. Flocs were reformed and characterized in the laboratory, validating the in situ settling velocities (0.5–3.8 mm/s) and the existence of large low-density macro-flocs (>300 μm). We verified that flocculation prevailed, exhibiting seasonal patterns; (1) the highest aggregation rates matched the increase in total suspended solids at rising-flow (>100 mg/L), (2) periods of high-flow showed stable aggregation rates, and (3) an influence of marine conditions occurred at low-flow. Particulate phosphorous and organic fraction showed seasonal patterns linked to flocculation. Due to damming, the shear rates varied slightly (7–11 L/s) in the Grijalva, leading to high flocculation intensities affecting the diffusivity ratio. In the Usumacinta, aggregation was limited by shear rates that normally exceed 15 1/s. We found seasonal Rouse parameters representative of sediment dynamics.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3