Detection and Attribution of Changes in Terrestrial Water Storage across China: Climate Change versus Vegetation Greening

Author:

Kong Rui1ORCID,Zhang Zengxin123ORCID,Zhang Ying1,Wang Yiming1,Peng Zhenhua1,Chen Xi14ORCID,Xu Chong-Yu5ORCID

Affiliation:

1. State Key Laboratory of Hydrology-Water Resources and Hydraulics Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China

2. Joint Innovation Center for Modern Forestry Studies, College of Forestry, Nanjing Forestry University, Nanjing 210037, China

3. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

4. Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China

5. Department of Geosciences, University of Oslo, 0316 Oslo, Norway

Abstract

Whether or not large-scale vegetation restoration will lead to a decrease in regional terrestrial water storage is a controversial topic. This study employed the Geodetector model, in conjunction with observed and satellite hydro-meteorological data, to detect the changes in terrestrial water storage anomaly (TWSA) and to identify the contributions of climate change and vegetation greening across China during the years 1982–2019. The results revealed that: (1) during the period of 1982–2019, TWSA showed a downward trend in about two thirds of the country, with significant declines in North China, southeast Tibet, and northwest Xinjiang, and an upward trend in the remaining third of the country, with significant increases mainly in the Qaidam Basin, the Yangtze River, and the Songhua River; (2) the positive correlation between normalized vegetation index (NDVI) and TWSA accounts for 48.64% of the total vegetation area across China. In addition, the response of vegetation greenness lags behind the TWSA and precipitation, and the lag time was shorter in arid and semi-arid regions dominated by grasslands, and longer in relatively humid regions dominated by forests and savannas; (3) furthermore, TWSAs decreased with the increase in NDVI and evapotranspiration (ET) in arid and semi-arid areas, and increased with the rise in NDVI and ET in the humid regions. The Geodetector model was used to detect the effects of climate, vegetation, and human factors on TWSA. It is worth mentioning that NDVI, precipitation, and ET were some of the main factors affecting TWSA. Therefore, it is essential to implement rational ecological engineering to mitigate climate change’s negative effects and maintain water resources’ sustainability in arid and semi-arid regions.

Funder

Key Research and Development Program of Xinjiang Uygur Autonomous Region, China

National Natural Science Foundation of China

West Light Foundation of the Chinese Academy of Sciences

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3