Revealing the Hidden Consequences of Increased Soil Moisture Storage in Greening Drylands

Author:

Wang Yu12,Han Tian13,Yang Yuze14,Hai Yue12,Wen Zhi12,Li Ruonan12ORCID,Zheng Hua12ORCID

Affiliation:

1. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Beijing 100085, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. College of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China

4. Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650091, China

Abstract

Vegetation primarily draws water from soil moisture (SM), with restoration in drylands often reducing SM storage (SMS). However, anomalies have been detected in the Beijing–Tianjin Sand Source Region (BTSSR) of China via the Global Land Data Assimilation System (GLDAS) and Gravity Recovery and Climate Experiment (GRACE). This study quantified the sources of increased SMS in drylands to elucidate the effects of vegetation restoration on SMS. The results indicated the following: (1) In vegetated drylands, 46.2% experienced a significant increase in SMS while 53.8% remained stable; both were positively correlated with the normalised difference vegetation index (NDVI). (2) The increase in SMS was accompanied by a decrease in groundwater storage (GWS), as indicated by the significant correlation coefficients of −0.710 and −0.569 for SMS and GWS, respectively. Furthermore, GWS served as the primary source of water for vegetation. (3) The results of the redundancy analysis (RDA) indicated that the initial vegetation, the driver of the observed trend of increased SMS and decreased GWS, accounted for 50.3% of the variability in water storage. Therefore, to sustain dryland ecosystems, we recommend that future vegetation restoration projects give due consideration to the water balance while concurrently strengthening the dynamic monitoring of SMS and GWS.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3