MSAFNet: Multiscale Successive Attention Fusion Network for Water Body Extraction of Remote Sensing Images

Author:

Lyu Xin12ORCID,Jiang Wenxuan1,Li Xin12ORCID,Fang Yiwei1ORCID,Xu Zhennan1ORCID,Wang Xinyuan1

Affiliation:

1. College of Computer and Information, Hohai University, Nanjing 211100, China

2. Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing 211100, China

Abstract

Water body extraction is a typical task in the semantic segmentation of remote sensing images (RSIs). Deep convolutional neural networks (DCNNs) outperform traditional methods in mining visual features; however, due to the inherent convolutional mechanism of the network, spatial details and abstract semantic representations at different levels are difficult to capture accurately at the same time, and then the extraction results decline to become suboptimal, especially on narrow areas and boundaries. To address the above-mentioned problem, a multiscale successive attention fusion network, named MSAFNet, is proposed to efficiently aggregate the multiscale features from two aspects. A successive attention fusion module (SAFM) is first devised to extract multiscale and fine-grained features of water bodies, while a joint attention module (JAM) is proposed to further mine salient semantic information by jointly modeling contextual dependencies. Furthermore, the multi-level features extracted by the above-mentioned modules are aggregated by a feature fusion module (FFM) so that the edges of water bodies are well mapped, directly improving the segmentation of various water bodies. Extensive experiments were conducted on the Qinghai-Tibet Plateau Lake (QTPL) and the Land-cOVEr Domain Adaptive semantic segmentation (LoveDA) datasets. Numerically, MSAFNet reached the highest accuracy on both QTPL and LoveDA datasets, including Kappa, MIoU, FWIoU, F1, and OA, outperforming several mainstream methods. Regarding the QTPL dataset, MSAFNet peaked at 99.14% and 98.97% in terms of F1 and OA. Although the LoveDA dataset is more challenging, MSAFNet retained the best performance, with F1 and OA being 97.69% and 95.87%. Additionally, visual inspections exhibited consistency with numerical evaluations.

Funder

Excellent Post-doctoral Program of Jiangsu Province

Fundamental Research Funds for the Central Universities

Project of Water Science and Technology of Jiangsu Province

National Natural Science Foundation of China

Joint Fund of Ministry of Education for Equipment Pre-research

Research Fund from Science and Technology on Underwater Vehicle Technology Laboratory

Qinglan Project of Jiangsu Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3