Analysis of the Energy Flow in a Municipal Wastewater Treatment Plant Based on a Supercritical Water Oxidation Reactor Coupled to a Gas Turbine

Author:

Mato Fidel A.,Peña Mar,García-Rodríguez Yoana,Bermejo María-DoloresORCID,Martín Ángel

Abstract

Biological municipal wastewater treatments lead to high sludge generation and long retention times, and the possibilities for recovery of the energy content of the input waste stream are very limited due to the low operating temperature. As an alternative, we propose a sequence of exclusively physicochemical, non-biological stages that avoid sludge production, while producing high-grade energy outflows favoring recovery, all in shorter times. Ultrafiltration and evaporation units provide a front-end concentration block, while a supercritical water oxidation reactor serves as the main treatment unit. A new approach for energy recovery from the effluent of the reactor is proposed, based on its injection in a gas turbine, which presents advantages over simpler direct utilization methods from operational and efficiency points of view. A process layout and a numerical simulation to assess this proposal have been developed. Results show that the model process, characterized with proven operating parameters, found a range of feasible solutions to the treatment problem with similar energy costs, at a fast speed, without sludge production, while co-generating the municipality’s average electricity consumption.

Funder

Ministerio de Ciencia e Innovación

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3