Heterogeneous Catalytic and Non-Catalytic Supercritical Water Oxidation of Organic Pollutants in Industrial Wastewaters Effect of Operational Parameters

Author:

Mazanov Sergei V.1ORCID,Phan Quang M.12,Aetov Almaz U.1ORCID,Zaripov Zufar I.1,Starshinova Valentina L.1,Karalin Ernest A.1,Usmanov Rustem A.1,Gumerov Farid M.1,Abdulagatov Ilmutdin M.34

Affiliation:

1. Mechanical Engineering Department, Kazan National Research Technological University, Kazan 420015, Russia

2. Department of Automotive Engineering, Hanoi University of Science and Technology, Hanoi 100000, Vietnam

3. Department of Physical and Organic Chemistry, Dagestan State University, Makhachkala 367008, Russia

4. Geothermal and Renewal Energy Institute of the High Temperature Joint Institute of the Russian Academy of Sciences, Makhachkala 367030, Russia

Abstract

This work reports supercritical water oxidation (SCWO) of organic pollutants in industrial wastewater in the absence and presence of catalysts. To increase the efficiency of the oxidation process, the SCWO of organic compounds in industrial wastewater was performed in the presence of various iron- and manganese-containing heterogeneous catalysts (Fe-Ac, Fe-OH, and Mn-Al). The catalytic and non-catalytic SCWO of organic compounds in wastewater from PJSC “Nizhnekamskneftekhim”, generated from the epoxidation of propylene with ethylbenzene hydroperoxide in the process of producing propylene oxide and styrene (PO/SM), was performed. The effect of operational parameters (temperature, pressure, residence time, type of catalysts, oxygen excess ratio, etc.) on the efficiency of the process of oxidation of organic compounds in the wastewater was studied. SCWO was studied in a flow reactor with induction heating under different temperatures (between 673.15 and 873.15 K) and at a pressure of 22.5 MPa. The reaction time ranged from 1.8 to 4.83 min. Compressed air was used as an oxidizing agent (oxidant) with an oxidant ratio of two to four. A pseudo-first-order model expressed the kinetics of the SCWO processes, and the rate constants were evaluated. In the present work, in order to optimize the operation parameters of the SCWO process, we used the thermodynamic properties of near- and supercritical water by taking into account the asymmetric behavior of the liquid–vapor coexistence curve.

Funder

Russian Scientific Fund

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3