Research on Low-Frequency Noise Control of Automobiles Based on Acoustic Metamaterial

Author:

Liao Yi,Huang Haibo,Chang Guangbao,Luo Deyang,Xu Chuanlai,Wu Yudong,Tang Jiyou

Abstract

With the transformation of the trend of vehicle electrification, the overall noise level in the vehicle is gradually reduced. The problem of low-frequency noise in the vehicle, which was previously ignored, is becoming more and more prominent. To solve the vehicle low-frequency noise problem, a combination of real-vehicle tests and simulation analysis is carried out. During the test, the driver and passengers feel that there is a relatively obvious low-frequency roar noise in the car, which results from the structural radiation noise of the trunk door vibration. Therefore, to solve this problem, we design an acoustic metamaterial with lightweight and miniaturized features based on the local resonance principle of phononic crystals. Firstly, the selection of the resonant unit configuration and the design of the band gap are implemented. Then, the layout planning of the whole vehicle, the layout of the resonance unit and the design of the base frame are implemented. The actual vehicle test results show that: after attaching the designed acoustic metamaterial, the low-frequency noise sound pressure levels in the front and rear of the vehicle were reduced by 2.0 dB (A) and 2.3 dB (A), respectively, meanwhile, the interior noise sound quality was improved. The sound pressure level at the driver’s right ear in the car has an abnormal peak of around 35Hz. In addition, the driver and passengers feel that there is a relatively obvious low-frequency roar noise in the car, and through low-pass filtering of the collected signals, it is confirmed that the peak frequency is the main cause of the low-frequency roar in the car. The low-frequency steady-state noise of the car is generally considered to be the low-frequency vibration of the body panel and the radiation occurs. Through the finite element simulation analysis (Grid Participation Analysis) of the abnormal peak frequency, the results show that the low-frequency roar is caused by the low-frequency vibration of the tailgate sheet metal, and the problem peak frequency is not coupled with the acoustic cavity mode. Facing the problem of the low-frequency roar radiated into the car by the vibration of the tailgate sheet metal parts, based on the local resonance band gap theory, we developed a design to suppress the 35 Hz vibration of the tailgate sheet metal parts and meet the characteristics of lightweight and miniaturization. By attaching the acoustic metamaterial to the tailgate and performing CAE simulation of the whole vehicle, it is determined that the structure can indeed reduce the 35 Hz noise in the car and the peak value of the tailgate sheet metal vibration.

Funder

the Chinese National Science Foundation Grant

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3