miR-497-5p Decreased Expression Associated with High-Risk Endometrial Cancer

Author:

Fridrichova IvanaORCID,Kalinkova Lenka,Karhanek Miloslav,Smolkova BozenaORCID,Machalekova Katarina,Wachsmannova LenkaORCID,Nikolaieva Nataliia,Kajo Karol

Abstract

The current guidelines for diagnosis, prognosis, and treatment of endometrial cancer (EC), based on clinicopathological factors, are insufficient for numerous reasons; therefore, we investigated the relevance of miRNA expression profiles for the discrimination of different EC subtypes. Among the miRNAs previously predicted to allow distinguishing of endometrioid ECs (EECs) according to different grades (G) and from serous subtypes (SECs), we verified the utility of miR-497-5p. In ECs, we observed downregulated miR-497-5p levels that were significantly decreased in SECs, clear cell carcinomas (CCCs), and carcinosarcomas (CaSas) compared to EECs, thereby distinguishing EEC from SEC and rare EC subtypes. Significantly reduced miR-497-5p expression was found in high-grade ECs (EEC G3, SEC, CaSa, and CCC) compared to low-grade carcinomas (EEC G1 and mucinous carcinoma) and ECs classified as being in advanced FIGO (International Federation of Gynecology and Obstetrics) stages, that is, with loco-regional and distant spread compared to cancers located only in the uterus. Based on immunohistochemical features, lower miR-497-5p levels were observed in hormone-receptor-negative, p53-positive, and highly Ki-67-expressing ECs. Using a machine learning method, we showed that consideration of miR-497-5p expression, in addition to the traditional clinical and histopathologic parameters, slightly improves the prediction accuracy of EC diagnosis. Our results demonstrate that changes in miR-497-5p expression influence endometrial tumorigenesis and its evaluation may contribute to more precise diagnoses.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3