Penalized Maximum Likelihood Angular Super-Resolution Method for Scanning Radar Forward-Looking Imaging

Author:

Tan KeORCID,Li Wenchao,Zhang Qian,Huang Yulin,Wu Junjie,Yang Jianyu

Abstract

Deconvolution provides an efficient technology to implement angular super-resolution for scanning radar forward-looking imaging. However, deconvolution is an ill-posed problem, of which the solution is not only sensitive to noise, but also would be easily deteriorate by the noise amplification when excessive iterations are conducted. In this paper, a penalized maximum likelihood angular super-resolution method is proposed to tackle these problems. Firstly, a new likelihood function is deduced by separately considering the noise in I and Q channels to enhance the accuracy of the noise modeling for radar imaging system. Afterwards, to conquer the noise amplification and maintain the resolving ability of the proposed method, a joint square-Laplace penalty is particularly formulated by making use of the outlier sensitivity property of square constraint as well as the sparse expression ability of Laplace distribution. Finally, in order to facilitate the engineering application of the proposed method, an accelerated iterative solution strategy is adopted to solve the obtained convex optimal problem. Experiments based on both synthetic data and real data demonstrate the effectiveness and superior performance of the proposed method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3