Multi-Scale Feature Residual Feedback Network for Super-Resolution Reconstruction of the Vertical Structure of the Radar Echo

Author:

Fu Xiangyu12,Zeng Qiangyu12,Zhu Ming12,Zhang Tao3,Wang Hao12ORCID,Chen Qingqing12ORCID,Yu Qiu12,Xie Linlin12

Affiliation:

1. CMA Key Laboratory of Atmospheric Sounding, Chengdu 610225, China

2. College of Electronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China

3. Yunnan Atmospheric Sounding Technology Support Center, Kunming 650034, China

Abstract

The vertical structure of radar echo is crucial for understanding complex microphysical processes of clouds and precipitation, and for providing essential data support for the study of low-level wind shear and turbulence formation, evolution, and dissipation. Therefore, finding methods to improve the vertical data resolution of the existing radar network is crucial. Existing algorithms for improving image resolution usually focus on increasing the width and height of images. However, improving the vertical data resolution of weather radar requires a focus on improving the elevation angle resolution while maintaining distance resolution. To address this challenge, we propose a network for super-resolution reconstruction of weather radar echo vertical structures. The network is based on a multi-scale residual feedback network (MR-FBN) and uses new multi-scale feature residual blocks (MSRB) to effectively extract and utilize data features at different scales. The feedback network gradually generates the final high-resolution vertical structure data. In addition, we propose an elevation upsampling layer (EUL) specifically for this task, replacing the traditional image subpixel convolution layer. Experimental results show that the proposed method can effectively improve the elevation angle resolution of weather radar echo vertical structure data, providing valuable help for atmospheric detection.

Funder

National Natural Science Foundation of China

the Open Grants of the State Key Laboratory of Severe Weather

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference34 articles.

1. Comparison and Analysis of X-band Phased Array Weather Radar Echo Data;Liu;Plateau Meteorol.,2015

2. Polarimetric radar signatures of a rare tornado event over South Korea;Lim;J. Atmos. Ocean. Technol.,2018

3. Weather radar network benefit model for tornadoes;Cho;J. Appl. Meteorol. Climatol.,2019

4. Comparison of GPM Satellite and Ground Radar Estimation of Tornado Heavy Precipitation in Yancheng, Jiangsu;Huang;J. Atmos. Sci.,2020

5. Combination RHI Automatic Realization Algorithm Based on Volume Scan Mode;Chen;Meteorological,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3