Experimental Investigation on Vortex-Induced Vibration of a Flexible Pipe under Higher Mode in an Oscillatory Flow

Author:

Ren Haojie,Zhang Mengmeng,Cheng Jingyun,Cao Peimin,Xu Yuwang,Fu Shixiao,Liu Chang

Abstract

Different from the previous studies of the vortex-induced vibration (VIV) dominated by first mode of flexible pipe in an oscillatory flow, the features of a higher mode dominated are experimentally investigated in the ocean basin. The flexible pipe is forced to harmonically oscillate with different combinations of a period and amplitude. The design dominant mode consists of first and second modes under the maximum reduced velocity (VR) of approximately 5.5 with a KC number ranging from 22 to 165. The VIV responses between only the excited first mode and the excited higher mode are compared and studied using displacement reconstruction and wavelet transform methods. The discrepancies of spatial and temporal response between smaller and larger KC numbers (KC = 56 and 121) are first observed. The strong alternate mode dominance and lock-in phenomena occur in the case of larger KC numbers, while they cannot be observed in the case of smaller KC numbers under higher modes. The VIV dominant frequency in the in-line (IL) direction is found to be always triple the oscillatory flow frequency and not twice that in the cross flow (CF) direction. The dominant frequency in the CF direction can be predicted by the Strouhal law, and the Strouhal number is approximately 0.18 under VR = 5.5, which is not affected by the excited mode. Moreover, differences of response motion trajectory are also revealed in this paper. The present work improves the basic understanding of vessel motion induced VIV and provides helpful references for developing prediction methods of VIV in an oscillatory flow.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3