Resistance Characteristics of SMA Actuator Based on the Variable Speed Phase Transformation Constitutive Model

Author:

Lu YifanORCID,Zhang Rongru,Xu Ye,Wang Lei,Yue Honghao

Abstract

The shape memory alloy (SMA)-based actuators have been increasingly used in different domains, such as automotive, aerospace, robotic and biomedical applications, for their unique properties. However, the precision control of such SMA-based actuators is still a problem. Most traditional control methods use the force/displacement signals of the actuator as feedback signals, which may increase the volume and weight of the entire system due to the additional force/displacement sensors. The resistance of the SMA, as an inherent property of the actuator, is a dependent variable which varies in accordance with its macroscopic strain or stress. It can be obtained by the voltage and the current imposed on the SMA with no additional measuring devices. Therefore, using the resistance of the SMA as feedback in the closed-loop control is quite promising for lightweight SMA-driven systems. This paper investigates the resistance characteristics of the SMA actuator in its actuation process. Three factors, i.e., the resistivity, the length, and the cross-sectional area, which affect the change of resistance were analyzed. The mechanical and electrical parameters of SMA were obtained using experiments. Numerical simulations were performed by using the resistance characteristic model. The simulation results reveal the change rules of the resistance corresponding to the strain of SMA and demonstrate the possibility of using the resistance for feedback control of SMA.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3