Provenance of Bengal Shelf Sediments: 1. Mineralogy and Geochemistry of Silt

Author:

Borromeo LauraORCID,Andò Sergio,France-Lanord ChristianORCID,Coletti Giovanni,Hahn Annette,Garzanti EduardoORCID

Abstract

This article illustrates a multi-technique frontier approach for the provenance study of silt-size sediments. The mineralogical composition of low-density and heavy-mineral fractions of four samples of fine to very coarse silt deposited on the Bengal shelf was analyzed separately for six different grain-size classes by combining grain counting under an optical microscope, Raman spectroscopy, and X-ray diffraction. The geochemical composition was determined on both bulk-sediment samples and on their <5-μm classes. Such a “multiple-window” approach allowed capturing the full mineralogical information contained in each sample, as well as the size-dependent intra-sample variability of all compositional parameters. The comparison between grain-size distributions obtained by different methods highlighted a notable fallacy of laser granulometry, which markedly overestimated the size of the finest mode represented by fine silt and clay. As a test case, we chose to investigate sediments of the Bengal shelf, where detritus is fed from the Meghna estuary, formed by the joint Ganga and Brahmaputra Rivers and representing the largest single entry point of sediment in the world’s oceans. The studied samples show the typical fingerprint of orogenic detritus produced by focused erosion of collision orogens. Bengal shelf silt is characterized by a feldspatho-quartzose (F-Q) composition with a Q/F ratio decreasing from 3.0 to 1.7 with increasing grain size, plagioclase prevailing over K-feldspar, and rich transparent-heavy-mineral assemblages including mainly amphibole with epidote, and minor garnet and pyroxene. Such a detrital signature compares very closely with Brahmaputra suspended load, but mineralogical and geochemical parameters, including the anomalous decrease of the Q/F ratio with increasing grain size, consistently indicate more significant Ganga contribution for cohesive fine silt. The accurate quantitative characterization of different size fractions of Bengal shelf sediments represents an essential step to allow comparison of compositional signatures characterizing different segments of this huge source-to-sink system, from fluvial and deltaic sediments of the Himalayan foreland basin and Bengal shelf to the Bengal Fan.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference115 articles.

1. Proportions of Exposed Igneous, Metamorphic, and Sedimentary Rocks

2. Sedimentary Rocks;Pettijohn,1975

3. Sediments cycling and diagenesis;Garrels;Geol. Surv. Bull.,1986

4. Mud and Mudstones: Introduction and Overview;Potter,2005

5. Integrating heavy-mineral, geochemical and biomarker analyses of Plio-Pleistocene sandy and silty turbidites: a novel approach for provenance studies (Indus Fan, IODP Expedition 355)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3