Injection of a CO2-Reactive Solution for Wellbore Annulus Leakage Remediation

Author:

Wasch Laura,Koenen Mariëlle

Abstract

Driven by concerns for safe storage of CO2, substantial effort has been directed on wellbore integrity simulations over the last decade. Since large scale demonstrations of CO2 storage are planned for the near-future, numerical tools predicting wellbore integrity at field scale are essential to capture the processes of potential leakage and assist in designing leakage mitigation measures. Following this need, we developed a field-scale wellbore model incorporating (1) a de-bonded interface between cement and rock, (2) buoyancy/pressure driven (microannulus) flow of brine and CO2, (3) CO2 diffusion and reactivity with cement and (4) chemical cement-rock interaction. The model is aimed at predicting leakage through the microannulus and specifically at assessing methods for CO2 leakage remediation. The simulations show that for a low enough initial leakage rate, CO2 leakage is self-limiting due to natural sealing of the microannulus by mineral precipitation. With a high leakage rate, CO2 leakage results in progressive cement leaching. In case of sustained leakage, a CO2 reactive solution can be injected in the microannulus to induce calcite precipitation and block the leak path. The simulations showed full clogging of the leak path and increased sealing with time after remediation, indicating the robustness of the leakage remediation by mineral precipitation.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3