Validation of Low-Cost Sensors in Measuring Real-Time PM10 Concentrations at Two Sites in Delhi National Capital Region

Author:

Sahu RaviORCID,Dixit Kuldeep Kumar,Mishra Suneeti,Kumar PurushottamORCID,Shukla Ashutosh Kumar,Sutaria Ronak,Tiwari Shashi,Tripathi Sachchida Nand

Abstract

In the present study, we assessed for the first time the performance of our custom-designed low-cost Particulate Matter (PM) monitoring devices (Atmos) in measuring PM10 concentrations. We examined the ambient PM10 levels during an intense measurement campaign at two sites in the Delhi National Capital Region (NCR), India. In this study, we validated the un-calibrated Atmos for measuring ambient PM10 concentrations at highly polluted monitoring sites. PM10 concentration from Atmos, containing laser scattering-based Plantower PM sensor, was comparable with that measured from research-grade scanning mobility particle sizers (SMPS) in combination with optical particle sizers (OPS) and aerodynamic particle sizers (APS). The un-calibrated sensors often provided accurate PM10 measurements, particularly in capturing real-time hourly concentrations variations. Quantile–Quantile plots (QQ-plots) for data collected during the selected deployment period showed positively skewed PM10 datasets. Strong Spearman’s rank-order correlations (rs = 0.64–0.83) between the studied instruments indicated the utility of low-cost Plantower PM sensors in measuring PM10 in the real-world context. Additionally, the heat map for weekly datasets demonstrated high R2 values, establishing the efficacy of PM sensor in PM10 measurement in highly polluted environmental conditions.

Funder

Department of Science and Technology, Ministry of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3