Evaluation of Hammermill Tip Speed, Air Assist, and Screen Hole Diameter on Ground Corn Characteristics

Author:

Braun Michaela,Wecker Haley,Dunmire KaraORCID,Evans Caitlin,Sodak Michael W.,Kapetanovich Maks,Shepherd Jerry,Fisher Randy,Coble Kyle,Stark Charles,Paulk Chad

Abstract

This study was performed to evaluate hammermill tip speed, assistive airflow, and screen hole diameter on hammermill throughput and characteristics of ground corn. Corn was ground using two Andritz hammermills measuring 1 m in diameter each equipped with 72 hammers and 300 HP motors. Treatments were arranged in a 3 × 3 × 3 factorial design with three tip speeds (3774, 4975, and 6176 m/min), three screen hole diameters (2.3, 3.9, and 6.3 mm), and three air flow rates (1062, 1416, and 1770 fan revolutions per minute). Corn was ground on three separate days to create three replications and treatments were randomized within day. Samples were collected and analyzed for moisture, particle size, and flowability characteristics. There was a 3-way interaction (p = 0.029) for standard deviation (Sgw). There was a screen hole diameter × hammer tip speed interaction (p < 0.001) for geometric mean particle size dgw (p < 0.001) and composite flow index (CFI) (p < 0.001). When tip speed increased from 3774 to 6176 m/min, the rate of decrease in dgw was greater as screen hole diameter increased from 2.3 to 6.3 mm. For CFI, increasing tip speed decreased the CFI of ground corn when ground using the 3.9 and 6.3 mm screen. However, when grinding corn using the 2.3 mm screen, there was no evidence of difference in CFI when increasing tip speed. In conclusion, the air flow rate did not influence dgw of corn, but hammer tip speed and screen size were altered and achieved a range of dgw from 304 to 617 µm.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference28 articles.

1. The crushing of wheat kernels and its consequence on the grinding process

2. Chapter 6: Size reduction;Berk,2013

3. Size reduction solutions for hard-to-reduce materials;Wennerstrum;Powder Bulk Eng.,2002

4. Hammermills and Roller Mills;Koch,2002

5. Particle Size Reduction, Chapter 8;Heiman,2005

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3