Simulation Analysis and Multiobjective Optimization of Pulverization Process of Seed-Used Watermelon Peel Pulverizer Based on EDEM

Author:

Mou Xiaobin1,Wan Fangxin1,Wu Jinfeng1,Luo Qi1,Xin Shanglong1,Ma Guojun1,Zhou Xiaoliang2,Huang Xiaopeng1,Peng Lizeng3

Affiliation:

1. College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China

2. School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China

3. Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food and Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China

Abstract

To enhance the utilization of seed-used watermelon peel and mitigate environmental pollution, a hammer-blade seed-used watermelon peel crusher was designed and manufactured, and its structure and working parameters were optimized. Initially, the seed-used watermelon peel crusher and seed-used watermelon peel model were constructed, and the model’s parameters were calibrated. Subsequently, the discrete element method (EDEM2022) was employed to investigate the effects of spindle speed (MSS), the number of hammers (NCB), and feeding volume (FQ) on the pulverizing process. Multivariate nonlinear regression prediction models were developed for the percentage of pulverized particle size less than 8 mm (Psv), pulverizing efficiency (Ge), and power density (Ppd), followed by the analysis of influencing factors and prediction models using ANOVA. The multiobjective optimization of the prediction model utilizing the improved hybrid metacellular genetic algorithm CellDE resulted in solutions of 90.02%, 89.57%, and 8.35 × 10−3 t/(h-kw) for Psv-opt, Ge-opt, and Ppd-opt, respectively. The corresponding optimal interaction values of MSS, NCB, and FQ were determined to be 1500 r/min, 108, and 150 kg/min. Finally, a prototype test was conducted by combining the optimal factor interaction values, yielding statistically calculated values of 96.63%, 92.37%, and 7.76 × 10−3 t/(h-kw) for Psv-pr, Ge-pr, and Ppd-pr, respectively. The results indicate that the optimized values of Psv-opt, Ge-opt, and Ppd-opt models have an error of less than 8% compared to the statistically calculated values of the prototype test and outperform the values of Psv-ori, Ge-ori, and Ppd-ori obtained under the original parameters.

Funder

xiaopeng huang

Publisher

MDPI AG

Reference32 articles.

1. Zhang, Z. (2019). Design and Research of Seed-Used Watermelon Crushing Separator, Gansu Agricultural University.

2. Design of Seed-Used Watermelon Double-Pass Beater;Chang;For. Mach. Woodwork. Equip.,2021

3. Study on microwave vacuum drying characteristics and quality of Seed-used Watermelon solids;Ding;J. Chin. Agric. Mech.,2023

4. Discrete element model construction and seed-flesh separation process of seed gourd;Sun;J. Northwest A&F Univ. (Nat. Sci. Ed.),2022

5. Numerical simulation of particle motion at cucumber straw grinding process based on EDEM2022;Xu;Int. J. Agric. Biol. Eng.,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3