Ball-End Cutting Tool Posture Optimization for Robot Surface Milling Considering Different Joint Load

Author:

Li Xinyue1,Lu Lei1ORCID,Fan Cheng1,Liang Fusheng1,Sun Lining1,Zhang Lei1

Affiliation:

1. Jiangsu Provincial Key Laboratory, Advanced Robotics & Collaborative Innovation Center, Suzhou Nano Science and Technology, Soochow University, Suzhou 215021, China

Abstract

Robots with openness and flexibility have attracted a large number of researchers to conduct in-depth studies in the field of surface machining. However, there is a redundant degree of freedom (DOF) in 6-DOF robot machining: when a ball end milling cutter is used to process curved parts, the tool point needs to strictly follow the planned milling trajectory, but the tool axis vector only needs to be within a certain range. During the machining process, the rotation of the tool around its axis is not constrained. Therefore, it is necessary to optimize the redundant DOF. Aiming at the redundant DOF of the tool axis vector in ball end milling for surface parts, a Redundancy Optimization strategy for Minimum Joint trajectory (ROMJ) is proposed. It takes the shortest trajectory of robot joints as the optimization objective, and the numerical optimization method is adopted to carry out the optimal design of tool axis vector trajectory in the milling process. Before optimization, to decrease the data volume, the number of track points is sampled and adjusted based on curve characterization errors. In the optimization process, considering the obvious difference in the load quality characteristics of the robot joints, a Redundancy Optimization strategy for Minimum Joint trajectory considering the different Load of joints (ROMJ-L) is proposed. The load difference coefficients of each joint are introduced into the optimization objective of the trajectory of robot joints. By using this method, the optimal design of each joint trajectory of the robot is realized. In order to verify the methods proposed in this paper, a comparison experiment is carried out. The results show that under the same tool point trajectory, the proposed methods can significantly reduce the robot joint trajectory, and the joint trajectory is influenced by the load difference of each joint. Finally, an Eflin-10 robot is used to process the butterfly trajectory tool path by the trajectory planned by the ROMJ-L method, and the results show that the method is practical.

Funder

Natural Science Foundation of the Jiangsu Higher Education Institution of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3