Study of Pavement Macro- and Micro-Texture Evolution Law during Compaction Using 3D Laser Scanning Technology

Author:

Lin Yuchao1,Dong Chenyang2,Wu Difei1,Jiang Shengchuan3,Xiang Hui2,Weng Zihang1

Affiliation:

1. Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, 4800 Cao’an Road, Shanghai 201804, China

2. China State Construction Railway Investment & Engineering Group Co., Ltd., Beijing 102600, China

3. Department of Traffic Engineering, Business School, University of Shanghai for Science and Technology, Shanghai 200093, China

Abstract

The pavement macro-texture and micro-texture are crucial factors for evaluating pavement performance as they have a significant correlation with friction, water film formation, and driving safety. During pavement construction, the macro-texture and micro-texture are significantly related to compaction operations. However, the current approach for evaluating pavement texture still relies on post-construction acceptance, with few considerations on the evolution patterns of pavement texture during the compaction process. Therefore, this study aimed to investigate the texture evolution law during compaction by implementing a laboratory compaction method. High-precision texture data from various asphalt mixtures were collected using 3D laser scanning during laboratory compaction. Macro-texture and micro-texture parameters were used to evaluate surface texture. Nineteen traditional geometric parameters were calculated at the macro-level to analyze macro-texture characteristics, while a 2D wavelet transform approach was applied at the micro-level to extract micro-texture, and the energy of each level and relative energy were calculated as indicators. This study analyzed the evolution law of parameters and found that certain parameters tend to converge. Moreover, geometric parameters and energy at lower levels of the samples could be utilized as supervising factors to regulate the compaction process.

Funder

National Natural Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3