Fast Jukebox: Accelerating Music Generation with Knowledge Distillation

Author:

Pezzat-Morales Michel1,Perez-Meana Hector1ORCID,Nakashika Toru2

Affiliation:

1. Graduate and Research Section, Mechanical and Electrical Engineering School Instituto Politécnico Nacional, Mexico City 04440, Mexico

2. Department of Information System Fundamentals, Graduate School of Information Systems, The University of Electro-Communications, Tokyo 182-8585, Japan

Abstract

The Jukebox model can generate high-diversity music within a single system, which is achieved by using a hierarchical VQ-VAE architecture to compress audio in a discrete space at different compression levels. Even though the results are impressive, the inference stage is tremendously slow. To address this issue, we propose a Fast Jukebox, which uses different knowledge distillation strategies to reduce the number of parameters of the prior model for compressed space. Since the Jukebox has shown highly diverse audio generation capabilities, we used a simple compilation of songs for experimental purposes. Evaluation results obtained using emotional valence show that the proposed approach achieved a tendency towards actively pleasant, thus reducing inference time for all VQ-VAE levels without compromising quality.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference41 articles.

1. Ji, S., Luo, J., and Yang, X. (2020). Comprehensive survey of deep music generation: Multi label representations, algorithms, evaluations and future directions. arXiv.

2. A deep learning based piano music notation recognition method;Li;Comput. Intell. Neurosci.,2022

3. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. (2022, January 18–24). High-resolution image synthesis with latent diffusion models. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA.

4. Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019, January 2–7). BERT: Pre-training of deep bidirectional transformers for language understanding. Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA.

5. Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., and Ray, A. (December, January 28). Training language models to follow instructions with human feedback. Proceedings of the 36th Conference on Neural Information Processing Systems, New Orleans, LA, USA.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3