Efficient Medical Knowledge Graph Embedding: Leveraging Adaptive Hierarchical Transformers and Model Compression

Author:

Li Xuexiang1,Yang Hansheng1ORCID,Yang Cong1,Zhang Weixing1ORCID

Affiliation:

1. School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou 450001, China

Abstract

Medical knowledge graphs have emerged as essential tools for representing complex relationships among medical entities. However, existing methods for learning embeddings from medical knowledge graphs, such as DistMult, RotatE, ConvE, InteractE, JointE, and ConvKB, may not adequately capture the unique challenges posed by the domain, including the heterogeneity of medical entities, rich hierarchical structures, large-scale, high-dimensionality, and noisy and incomplete data. In this study, we propose an Adaptive Hierarchical Transformer with Memory (AHTM) model, coupled with a teacher–student model compression approach, to effectively address these challenges and learn embeddings from a rich medical knowledge dataset containing diverse entities and relationship sets. We evaluate the AHTM model on this newly constructed “Med-Dis” dataset and demonstrate its superiority over baseline methods. The AHTM model achieves substantial improvements in Mean Rank (MR) and Hits@10 values, with the highest MR value increasing by nearly 56% and Hits@10 increasing by 39%. Furthermore, we observe similar performance enhancements on the “FB15K-237” and “WN18RR” datasets. Our model compression approach, incorporating knowledge distillation and weight quantization, effectively reduces the model’s storage and computational requirements, making it suitable for resource-constrained environments. Overall, the proposed AHTM model and compression techniques offer a novel and effective solution for learning embeddings from medical knowledge graphs and enhancing our understanding of complex relationships among medical entities, while addressing the inadequacies of existing approaches.

Funder

Zhengzhou collaborative innovation major project

Key scientific research project of colleges and universities in Henan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3