CRC-Based Reliable WiFi Backscatter Communiation for Supply Chain Management

Author:

Liu Yun-Hao1,Liu Tao2,Huang Yimeng1,Ding Han3,Xi Wei3,Gong Wei1

Affiliation:

1. School of Computer Science and Technology, University of Science and Technology of China, Hefei 230026, China

2. Business School, China University of Political Science and Law, Beijing 102249, China

3. School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Supply chain management aims to achieve both efficiency and low cost. Backscatter technology provides a low-energy consumption approach for critical links in the supply chain, such as warehouse management and cargo identification. Traditional backscatter systems achieve tag data transmission through dedicated hardware or controlled transmission sources. An additional access point (AP) can be used to ensure that the original data are always known in tag data decoding. These requirements increase the deployment costs and are not suitable for large-scale applications. To address these challenges, we introduce CRCScatter, a backscatter system based on a cyclic redundancy check (CRC) reverse algorithm, with an uncontrolled source and a single-AP receiver. The CRCScatter decoder at the receiver uses the constraints within 802.11b WiFi packets to recover the original packet and decode tag data from the backscatter packet. Our Matlab simulation results show that CRCScatter is effective in the low signal-to-noise ratio (SNR) regime, and its average decoding time is independent of the length of tag data. By appending redundant bits in tag data, the decoding accuracy of CRCScatter can be improved. In summary, CRCScatter presents a backscatter communication mode based on ambient WiFi signals with fewer hardware requirements and low deployment costs. Furthermore, the decoding idea of calculating unknown data based on the packet constraints has the potential to expand to different types of excitation packages.

Funder

NSFC

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3