Thermal Deformation Stability Optimization Design and Experiment of the Satellite Bus to Control the Laser Communication Load’s Acquisition Time

Author:

Shi Yousheng123,Chen Shanbo3,Yu Meng3,Wu You3,Yu Jisong3,Zhang Lei123

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Chang Guang Satellite Technology Co., Ltd., Changchun 130102, China

Abstract

The optical axis angle fluctuation due to thermal deformation of the satellite bus between the laser communication load and the star sensor must be constrained to within 0.16 mrad to meet the rapid acquisition needs of the laser communication satellite. This paper analyzes the satellite’s in-orbit temperature field distribution, which is then used as the input boundary condition for the thermal deformation analysis. The optical axis angle fluctuation is reduced by the common reference optimization design. Then, adaptable isolation between the satellite bus structure and the reference support structure reduces the thermal deformation coupling. As a result, there will be less optical axis angle fluctuation caused by thermal deformation. The thermal deformation between the optimized laser communication load and the star sensor installation angle is decreased to 14.25″ according to the entire satellite simulation analysis of the modified structure. The maximum angle variation induced by temperature change dropped from 117.74″ to 10.72″ through the ground temperature deviation and prism calibration tests. The on-orbit alignment test confirms that the required capture time of 30 s is met. The aforementioned work minimizes the uncertain region of laser communication load, lessens the in-orbit acquisition time, and satisfies the demand for speedy acquisition.

Funder

Jilin Province Science and Technology Development Plan Project of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3