Capacity Enhancement Analysis of an OAM-OFDM-SMM Multiplexed Free Space Communication System in Atmospheric Turbulence

Author:

Sinha Shivaji1,Kumar Chakresh1,Armghan Ammar2ORCID,Singh Mehtab3,Alsharari Meshari2ORCID,Aliqab Khaled2ORCID

Affiliation:

1. University School of Information, Communication & Technology, Guru Gobind Singh Indraprastha University, Sector 16 C, Dwarka, New Delhi 110078, India

2. Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia

3. Department of Electronics and Communication Engineering, University Institute of Engineering, Chandigarh University, Mohali 140413, India

Abstract

To overcome atmospheric turbulence (AT) distortion during signal propagation through the optical link, orbital angular momentum (OAM) mode states employing multiple inputs and multiple outputs (MIMO) techniques have recently gained prominence in free space optical communication (FSO). As the various OAM modes propagate through the free space optical link, signal attenuation and crosstalk may occur, reducing system capacity and increasing the likelihood of bit errors. In this work, our objective is to propose a spectrally efficient, high-speed and channel capacity efficient crosstalk FSO communication system by combining the features of orthogonal frequency division multiplexing (OFDM), spatial mode multiplexing (SMM), and a mode diversity scheme into an existing OAM-FSO communication system. The incorporation of the OFDM-MIMO concept and spatial mode diversity into the existing OAM-MIMO-FSO system is extremely beneficial in enhancing the transmission capacity, mitigating multipath fading and atmospheric turbulence distortions. The Gamma–Gamma (GG) model is used to assess the performance of the proposed system under various atmospheric turbulence conditions in terms of the performance metrics such as BER vs. number of OAM states for different refractive index structure and Rytov constants, link distance, and an optical signal to noise ratio (OSNR). A FEC limit of 3.8 × 10−3 and a maximum link distance of 2 km are set to evaluate these performance parameters. Finally, the transmission capacity of the proposed system is compared to that of the existing MIMO and OAM-SMM-MIMO systems for different OSNR values under atmospheric turbulence conditions for the OAM state of l = +1, yielding an overall improvement of 3.3 bits/s/Hz compared to conventional MIMO systems and 1.6 bits/s/Hz for the OAM-SMM-MIMO system.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3