Health Management of Bearings Using Adaptive Parametric VMD and Flying Squirrel Search Algorithms to Optimize SVM

Author:

Zhang Tianrui1,Zhou Lianhong1,Li Jinyang1,Niu Huiyuan1

Affiliation:

1. School of Mechanical Engineering, Shenyang University, Shenyang 110044, China

Abstract

Bearing, as one of the core parts of rotating machinery, has a running state which is related to the overall operation of the system. Due to the bearing structure and its complex operating environment, running condition monitoring and fault diagnosis is always a key problem in the field of bearing health management, which is of great significance for bearing maintenance and equipment reliability and safety. In view of the difficulty in parameter selection and poor feature extraction ability of variational mode decomposition (VMD) in existing feature extraction, this paper uses the flying squirrel search algorithm (SSA) to optimize the parametric of decomposition layer k and penalty factor α in VMD, and forms an adaptive VMD signal decomposition method. To solve the problem of high dimensionality and long extraction time of multi-domain fault feature set, kernel principal component analysis (KPCA) is used to reduce feature dimensionality. Then, the processed features are input into the support vector machine (SVM) for fault diagnosis and classification, and the parameter optimization ability of SSA is used again to build the SSA-SVM fault diagnosis model. To evaluate the running state of bearings, an alarm threshold method based on the root mean square value calculated by cosine similarity and 3σ is proposed to divide samples of different health states. Finally, the method constructed in this paper is compared with other methods by using simulation and experimental data sets, and the running condition monitoring and fault diagnosis of rolling bearings are successfully realized, which shows the superiority and effectiveness of the method proposed in this paper.

Funder

National Natural Science Foundation of China

Liaoning Province Graduate Education and Teaching Reform Research Funding Project

Liaoning Province education science “14th Five-Year plan”

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3