Assessing Suitability of Auto-Selection of Hot and Cold Anchor Pixels of the UAS-METRIC Model for Developing Crop Water Use Maps

Author:

Molaei Behnaz,Peters R. Troy,Khot Lav R.,Stöckle Claudio O.

Abstract

The METRIC energy balance model uses an auto-selection approach for identifying hot (dry, bare soil) and cold (fully transpiring crop) anchor pixels for the internal calibration of the model. When an unmanned aerial system (UAS) is used for imagery, the small image size and the varying crop and soil water status of agricultural fields make the identification of reliable hot and cold pixels challenging. In this study, we used an experimental spearmint field under three irrigation levels (75%, 100%, and 125% of crop evapotranspiration, ETc). As a way of providing diverse field conditions, six different extents (Extent 1 to Extent 6) were selected from each day of the seven days of UAS imagery campaigns of the same field for generating UAS-based ETc maps using auto-selection of hot and cold anchor pixels for the internal calibration of the model. Extent 1 had the smallest coverage area of the field, including only plants that were irrigated at 75% of ETc, while the fields of view of the other extents increased to where the Extent 6 covered the spearmint field and all the surroundings including trees, a nearby water canal, irrigated grass, and irrigated and non-irrigated soil. The results showed that different sizes of extent resulted in the selection of variable hot (bare, but moist soil in small extents, and dry bare soil at the larger extents) and cold anchor pixels (crop under water stress at the small extents, and tree canopy or grass alongside the water canal at the larger extents). This variation resulted in significantly different ETc estimation for the same spearmint crop field, indicative of a potential limitation for the use auto-selection of hot and cold pixels when using the UAS-METRIC model.

Funder

National Institute of Food and Agriculture

Washington Mint Commission, Mint Industry Research Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3