Color–Texture Pattern Classification Using Global–Local Feature Extraction, an SVM Classifier, with Bagging Ensemble Post-Processing

Author:

Navarro ,Perez

Abstract

Many applications in image analysis require the accurate classification of complex patterns including both color and texture, e.g., in content image retrieval, biometrics, and the inspection of fabrics, wood, steel, ceramics, and fruits, among others. A new method for pattern classification using both color and texture information is proposed in this paper. The proposed method includes the following steps: division of each image into global and local samples, texture and color feature extraction from samples using a Haralick statistics and binary quaternion-moment-preserving method, a classification stage using support vector machine, and a final stage of post-processing employing a bagging ensemble. One of the main contributions of this method is the image partition, allowing image representation into global and local features. This partition captures most of the information present in the image for colored texture classification allowing improved results. The proposed method was tested on four databases extensively used in color–texture classification: the Brodatz, VisTex, Outex, and KTH-TIPS2b databases, yielding correct classification rates of 97.63%, 97.13%, 90.78%, and 92.90%, respectively. The use of the post-processing stage improved those results to 99.88%, 100%, 98.97%, and 95.75%, respectively. We compared our results to the best previously published results on the same databases finding significant improvements in all cases.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3