Vision-Assisted Interactive Human-in-the-Loop Distal Upper Limb Rehabilitation Robot and its Clinical Usability Test

Author:

Nam Hyung SeokORCID,Hong Nhayoung,Cho Minwoo,Lee ChiwonORCID,Seo Han GilORCID,Kim SungwanORCID

Abstract

In the context of stroke rehabilitation, simple structures and user-intent driven actuation are relevant features to facilitate neuroplasticity as well as deliver a sufficient number of repetitions during a single therapy session. A novel robotic treatment device for distal upper limb rehabilitation in stroke patients was developed, and a usability test was performed to assess its clinical feasibility. The rehabilitation robot was designed as a two-axis exoskeleton actuated by electric motors, consisting of forearm supination/pronation and hand grasp/release, which were selected based on a kinematic analysis of essential daily activities. A vision-assisted algorithm was utilized for user-intent extraction in a human-in-the-loop concept. A usability test was performed on six physiatrists, five biomedical engineers, five rehabilitation therapists, two chronic stroke patients, and two caregivers of the patients. After sufficient instruction, all subjects tested the robot for a minimum of 10 min and completed the evaluation form using a 7-point Likert scale. The participants found the device interesting (5.7 ± 1.2), motivating (5.8 ± 0.9), and as having less possibility of causing injury or safety issues (6.1 ± 1.1); however, the appropriateness of difficulty (4.8 ± 1.9) and comfort level (4.9 ± 1.3) were found to be relatively low. Further development of the current device would provide a good treatment option as a simple, low-cost, and clinically feasible rehabilitation robot for stroke.

Funder

Seoul National University Hospital Research Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3