A Spatial–Temporal Block-Matching Patch-Tensor Model for Infrared Small Moving Target Detection in Complex Scenes

Author:

Aliha Aersi123ORCID,Liu Yuhan12ORCID,Ma Yapeng123ORCID,Hu Yuxin123,Pan Zongxu123ORCID,Zhou Guangyao12

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

2. Key Laboratory of Technology in Geo-Spatial Information Processing and Application System, Chinese Academy of Sciences, Beijing 100190, China

3. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Detecting infrared (IR) small moving targets in complex scenes quickly, accurately, and robustly remains a challenging problem in the current research field. To address this issue, this paper proposes a novel spatial–temporal block-matching patch-tensor (STBMPT) model based on a low-rank sparse decomposition (LRSD) framework. This model enhances the traditional infrared patch-tensor (IPT) model by incorporating joint spatial–temporal sampling to exploit inter-frame information and constructing a low-rank patch tensor using image block matching. Furthermore, a novel prior-weight calculation is introduced, utilizing the eigenvalues of the local structure tensor to suppress interference such as strong edges, corners, and point-like noise from the background. To improve detection efficiency, the tensor is constructed using a matching group instead of using a traditional sliding window. Finally, the background and target components are separated using the alternating direction method of multipliers (ADMM). Qualitative and quantitative experimental analysis in various scenes demonstrates the superior detection performance and efficiency of the proposed algorithm for detecting infrared small moving targets in complex scenes.

Funder

Aerospace Information Research Institute, Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3