Dual-Structure Elements Morphological Filtering and Local Z-Score Normalization for Infrared Small Target Detection against Heavy Clouds

Author:

Peng Lingbing1,Lu Zhi2ORCID,Lei Tao1ORCID,Jiang Ping1

Affiliation:

1. Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China

2. School of Cyber Science and Technology, University of Science and Technology of China, Hefei 230026, China

Abstract

Infrared (IR) small target detection in sky scenes is crucial for aerospace, border security, and atmospheric monitoring. Most current works are typically designed for generalized IR scenes, which may not be optimal for the specific scenario of sky backgrounds, particularly for detecting small and dim targets at long ranges. In these scenarios, the presence of heavy clouds usually causes significant false alarms due to factors such as strong edges, streaks, large undulations, and isolated floating clouds. To address these challenges, we propose an infrared dim and small target detection algorithm based on morphological filtering with dual-structure elements. First, we design directional dual-structure element morphological filters, which enhance the grayscale difference between the target and the background in various directions, thus highlighting the region of interest. The grayscale difference is then normalized in each direction to mitigate the interference of false alarms in complex cloud backgrounds. Second, we employ a dynamic scale awareness strategy, effectively preventing the loss of small targets near cloud edges. We enhance the target features by multiplying and fusing the local response values in all directions, which is followed by threshold segmentation to achieve target detection results. Experimental results demonstrate that our method achieves strong detection performance across various complex cloud backgrounds. Notably, it outperforms other state-of-the-art methods in detecting targets with a low signal-to-clutter ratio (MSCR ≤ 2). Furthermore, the algorithm does not rely on specific parameter settings and is suitable for parallel processing in real-time systems.

Funder

National Natural Science Foundation of China

CPSF

China Postdoctoral Science Foundation

Publisher

MDPI AG

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3