A Deep Learning Approach to Semantic Segmentation of Steel Microstructures

Author:

Muñoz-Rodenas Jorge1ORCID,García-Sevilla Francisco12ORCID,Miguel-Eguía Valentín12ORCID,Coello-Sobrino Juana12ORCID,Martínez-Martínez Alberto2

Affiliation:

1. High Technical School of Industrial Engineering of Albacete, Castilla-La Mancha University, 02006 Albacete, Spain

2. Materials Science and Engineering Laboratory, Regional Development Institute, Castilla-La Mancha University, 02006 Albacete, Spain

Abstract

The utilization of convolutional neural networks (CNNs) for semantic segmentation has proven to be successful in various applications, such as autonomous vehicle environment analysis, medical imaging, and satellite imagery. In this study, we investigate the application of different segmentation networks, including Deeplabv3+, U-Net, and SegNet, each recognized for their effectiveness in semantic segmentation tasks. Additionally, in the case of Deeplabv3+, we leverage the use of pre-trained ResNet50, ResNet18 and MobileNetv2 as feature extractors for a comprehensive analysis of steel microstructures. Our specific focus is on distinguishing perlite and ferrite phases in micrographs of low-carbon steel specimens subjected to annealing heat treatment. The micrographs obtained using an optical microscope are manually segmented. Preprocessing techniques are then applied to create a dataset for building a supervised learning model. In the results section, we discuss in detail the performance of the obtained models and the metrics used. The models achieve a remarkable 95% to 98% accuracy in correctly labeling pixels for each phase. This underscores the effectiveness of our approach in differentiating perlite and ferrite phases within steel microstructures.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3