A machine-learning approach to predict creep properties of Cr–Mo steel with time-temperature parameters
Author:
Funder
Beijing Institute of Technology
Publisher
Elsevier BV
Subject
Metals and Alloys,Surfaces, Coatings and Films,Biomaterials,Ceramics and Composites
Reference55 articles.
1. Materials discovery and design using machine learning;Liu;J Materiomics,2017
2. Perspective: materials informatics and big data: realization of the “fourth paradigm” of science in materials science;Agrawal;Apl Mater,2016
3. Combinatorial screening for new materials in unconstrained composition space with machine learning;Meredig;Phys Rev B,2014
4. Materials informatics;Rajan;Mater Today,2012
5. An online tool for predicting fatigue strength of steel alloys based on ensemble data mining;Agrawal;Int J Fatig,2018
Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Prediction of long-term creep modulus of thermoplastics using brief tests and interpretable machine learning;International Journal of Solids and Structures;2024-11
2. Understanding the creep behaviors and mechanisms of Mg-Gd-Zn alloys via machine learning;Journal of Magnesium and Alloys;2024-09
3. A Creep Model of Steel Slag–Asphalt Mixture Based on Neural Networks;Applied Sciences;2024-07-03
4. Recent progress on machine learning with limited materials data: Using tools from data science and domain knowledge;Journal of Materiomics;2024-07
5. Recent Progress in Creep-Resistant Aluminum Alloys for Diesel Engine Applications: A Review;Materials;2024-06-22
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3