Examining the Performance of Various Pretrained Convolutional Neural Network Models in Malware Detection

Author:

Abdulazeez Falah Amer1,Ahmed Ismail Taha2,Hammad Baraa Tareq2

Affiliation:

1. College of Education Pure Sciences, University of Anbar, Anbar 55431, Iraq

2. College of Computer Sciences and Information Technology, University of Anbar, Anbar 55431, Iraq

Abstract

A significant quantity of malware is created on purpose every day. Users of smartphones and computer networks now mostly worry about malware. These days, malware detection is a major concern in the cybersecurity area. Several factors can impact malware detection performance, such as inappropriate features and classifiers, extensive domain knowledge, imbalanced data environments, computational complexity, and resource usage. A significant number of existing malware detection methods have been impacted by these factors. Therefore, in this paper, we will first identify and determine the best features and classifiers and then use them in order to propose the malware detection method. The comparative strategy and proposed malware detection procedure consist of four basic steps: malware transformation (converting images of malware from RGB to grayscale), feature extraction (using the ResNet-50, DenseNet-201, GoogLeNet, AlexNet, and SqueezeNet models), feature selection (using PCA method), classification (including GDA, KNN, logistic, SVM, RF, and ensemble learning), and evaluation (using accuracy and error evaluation metrics). Unbalanced Malimg datasets are used in experiments to validate the efficacy of the results that were obtained. According to the comparison findings, KNN is the best machine learning classifier. It outperformed the other classifiers in the Malimg datasets in terms of both accuracy and error. In addition, DenseNet201 is the best pretrained model in the Malimg dataset. Therefore, the proposed DenseNet201-KNN methods had an accuracy rate of 96% and a minimal error rate of 3.07%. The proposed methods surpass existing state-of-the-art approaches. The proposed feature extraction is computationally quicker than most other methods since it uses a lightweight design and fewer feature vector dimensions.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Malware Detection Using Dual Siamese Network Model;Computer Modeling in Engineering & Sciences;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3