Recommendation system based on deep learning methods: a systematic review and new directions
Author:
Funder
Universiti Teknologi Malaysia
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Linguistics and Language,Language and Linguistics
Link
http://link.springer.com/content/pdf/10.1007/s10462-019-09744-1.pdf
Reference172 articles.
1. Adomavicius G, Tuzhilin A (2005a) Toward the next generation of recommender systems: a survey of the state of the art and possible extensions. IEEE Trans Knowl Data Eng 17(6):734–749. https://doi.org/10.1109/TKDE.2005.99
2. Adomavicius G, Tuzhilin A (2005b) Recommender systems: a survey of the state-of-the-art. IEEE Trans Knowl Data Eng 17:734–749
3. Alashkar T, Jiang S, Wang S, Fu Y (2017) Examples-rules guided deep neural network for makeup recommendation. In: Proceedings of the 31th conference on artificial intelligence (AAAI 2017), pp 941–947
4. Alejandra L, Camacho G, Alves-souza SN (2018) Social network data to alleviate cold-start in recommender system: a systematic review. Inf Process Manag 54(4):529–544. https://doi.org/10.1016/j.ipm.2018.03.004
5. Alencar P, Cowan D (2018) The use of machine learning algorithms in recommender systems: a systematic review. Expert Syst Appl 97:205–227. https://doi.org/10.1016/j.eswa.2017.12.020
Cited by 189 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Smart travel planning system based on kernel density estimation and similarity metric clustering algorithm;Evolutionary Intelligence;2024-09-06
2. Distributed Recommendation Systems: Survey and Research Directions;ACM Transactions on Information Systems;2024-09-06
3. A systematic review of the literature on deep learning approaches for cross-domain recommender systems;Decision Analytics Journal;2024-09
4. A survey on large language models for recommendation;World Wide Web;2024-08-22
5. Blockchain Consensus Algorithm for Supply Chain Information Security Sharing Based on Convolutional Neural Networks;2024-08-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3