An Improved CNN-BILSTM Model for Power Load Prediction in Uncertain Power Systems

Author:

Tang Chao1ORCID,Zhang Yufeng1,Wu Fan1,Tang Zhuo1

Affiliation:

1. College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China

Abstract

Power load prediction is fundamental for ensuring the reliability of power grid operation and the accuracy of power demand forecasting. However, the uncertainties stemming from power generation, such as wind speed and water flow, along with variations in electricity demand, present new challenges to existing power load prediction methods. In this paper, we propose an improved Convolutional Neural Network–Bidirectional Long Short-Term Memory (CNN-BILSTM) model for analyzing power load in systems affected by uncertain power conditions. Initially, we delineate the uncertainty characteristics inherent in real-world power systems and establish a data-driven power load model based on fluctuations in power source loads. Building upon this foundation, we design the CNN-BILSTM model, which comprises a convolutional neural network (CNN) module for extracting features from power data, along with a forward Long Short-Term Memory (LSTM) module and a reverse LSTM module. The two LSTM modules account for factors influencing forward and reverse power load timings in the entire power load data, thus enhancing model performance and data utilization efficiency. We further conduct comparative experiments to evaluate the effectiveness of the proposed CNN-BILSTM model. The experimental results demonstrate that CNN-BILSTM can effectively and more accurately predict power loads within power systems characterized by uncertain power generation and electricity demand. Consequently, it exhibits promising prospects for industrial applications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3